For this activity, each letter of the alphabet has a maths question attached to it, for example 3×4 is A . In school I usually put each letter clue inside a mini egg and then hide the eggs around school for the children to find. At home, you could make your own egg shapes and then write the question and letter of the alphabet on the back. There are two levels of challenge included here.

I then hide the letter-filled eggs about school and the children find them. They solve each question and record the answer on their own answer sheet so eventually they have a number assigned to each letter of the alphabet. In the example above, $\mathrm{A}=12$.

They then use this to work out where the chocolate is hidden using a clue sheet. This says where the chocolate is hidden using the alphabet code from the answers, e.g. if when the children have worked out their letters they find A
$=12 \mathrm{~B}=14$ and $\mathrm{G}=16$ then the clue $14 \underline{12} \underline{16}$ would state that the chocolate was in a bag. Hope that makes sense..!

A	7×4	N	4×6
B	$4 \times 4=8 \times ?$	O	4×3
C	$250 \div 10$	P	$353 \div 10$
D	6×7	Q	6×9
E	9×9	R	$(4 \times 5)-4$
F	$7 \times 4=14 \times ?$	S	20×200
G	4×8	T	$(17 \times 100)-1$
H	175×2	U	10×1.5
I	$(7 \times 4)-1$	V	8×8
J	641×3	W	152×3
K	8×6	X	7×11
L	$90 \div 2$	Y	$1500 \div 10$
M	$1 / 2$ of 30	Z	9×7

A	7×428	N	4×624
B	$4 \times 4=8 \times ? 2$	O	4×312
C	$250 \div 1025$	P	$353 \div 1035.3$
D	6×742	Q	6×954
E	9×981	R	$(4 \times 5)-416$
F	$7 \times 4=14 \times ? 2$	S	20×2004000
G	4×832	T	$(17 \times 100)-11699$
H	175×2350	U	10×1.515
I	$(7 \times 4)-127$	V	8×864
J	641×31923	W	152×3456
K	8×648	X	7×1177
L	$90 \div 245$	Y	$1500 \div 10150$
M	$1 / 2$ of 3015	Z	9×763

C2

A	$10 \times 0.15=$	N	40×15
B	$14 \times 4=8 \times ?$	O	0.4×3
C	234.5×100	P	$54.09 \div 100$
D	$2 / 5$ of 75	Q	6×0.9
E	$19.45+7.03$	R	$(316 \times 5)-307$
F	$8 \times 5=10 \times ?$	S	15×200
G	4×8	T	$(1.07 \times 100)-1$
H	$17.5 \div 10$	U	10×1.005
I	$(7 \times 4)-1$	V	18×800
J	$3 / 9$ of 27	W	152×3
K	8×6	X	17×11
L	$9105 \div 6$	Y	$10.5 \div 100$
M	$108 \times 3=94 \times 7$ (true or false)	Z	9×73

C2

A	$10 \times 0.15=1.5$	N	40×15600
B	$14 \times 4=8 \times ? 7$	O	0.4×31.2
C	234.5×1002345	P	$54.09 \div 1000.5409$
D	$2 / 5$ of 7530	Q	$6 \times 0.95 .4$
E	$19.45+7.03$ 26.48	R	$(316 \times 5)-307$ 1273
F	$8 \times 5=10 \times ? 4$	S	15×2003000
G	4×832	T	$(1.07 \times 100)-1106$
H	$17.5 \div 101.75$	U	$10 \times 1.00510 .05$
I	$(7 \times 4)-127$	V	18×80014400
J	$3 / 9$ of 279	W	152×3456
K	8×648	X	17×11187
L	$9105 \div 61517 \mathrm{r} 3$	Y	$10.5 \div 1000.105$
M	$108 \times 3=94 \times 7$ (true or false) false	Z	9×73657

Answer Sheet

A		N	
B		O	
C		P	
D		Q	
E		R	
F		S	
G		T	
H		U	
I		V	
J		W	
K		X	
L		Y	
M		Z	

